Enabling an Integrated Rate-temporal Learning Scheme on Memristor

نویسندگان

  • Wei He
  • Kejie Huang
  • Ning Ning
  • Kiruthika Ramanathan
  • Guoqi Li
  • Yu Jiang
  • JiaYin Sze
  • Luping Shi
  • Rong Zhao
  • Jing Pei
چکیده

Learning scheme is the key to the utilization of spike-based computation and the emulation of neural/synaptic behaviors toward realization of cognition. The biological observations reveal an integrated spike time- and spike rate-dependent plasticity as a function of presynaptic firing frequency. However, this integrated rate-temporal learning scheme has not been realized on any nano devices. In this paper, such scheme is successfully demonstrated on a memristor. Great robustness against the spiking rate fluctuation is achieved by waveform engineering with the aid of good analog properties exhibited by the iron oxide-based memristor. The spike-time-dependence plasticity (STDP) occurs at moderate presynaptic firing frequencies and spike-rate-dependence plasticity (SRDP) dominates other regions. This demonstration provides a novel approach in neural coding implementation, which facilitates the development of bio-inspired computing systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CMOS and Memristor Technologies for Neuromorphic Computing Applications

In this work, I present a CMOS implementation of a neuromorphic system that aims to mimic the behavior of biological neurons and synapses in the human brain. The synapse is modeled with a memristor-resistor voltage divider, while the neuron-emulating circuit (“CMOS Neuron”) comprises transistors and capacitors. The input aggregation and output firing characteristics of a CMOS Neuron are based o...

متن کامل

Energy-Efficient STDP-Based Learning Circuits with Memristor Synapses

It is now accepted that the traditional von Neumann architecture, with processor and memory separation, is ill suited to process parallel data streams which a mammalian brain can efficiently handle. Moreover, researchers now envision computing architectures which enable cognitive processing of massive amounts of data by identifying spatio-temporal relationships in real-time and solving complex ...

متن کامل

Energy-Efficient CMOS Memristive Synapses for Mixed-Signal Neuromorphic System-on-a-Chip

Emerging non-volatile memory (NVM), or memristive, devices promise energy-efficient realization of deep learning, when efficiently integrated with mixed-signal integrated circuits on a CMOS substrate. Even though several algorithmic challenges need to be addressed to turn the vision of memristive Neuromorphic Systems-on-a-Chip (NeuSoCs) into reality, issues at the device and circuit interface n...

متن کامل

A Hafnium-Oxide Memristive Dynamic Adaptive Neural Network Array

Power and precise scaling are significant restraining elements to advancements in computing. This paper presents a power efficient memristive device technology in the design of a neuromorphic architectural model that promises to overcome many of the performance limitations of conventional Von Neumann systems. The resulting memristive Dynamic Adaptive Neural Network Array (mrDANNA) addresses con...

متن کامل

A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications.

Crossbar arrays based on two-terminal resistive switches have been proposed as a leading candidate for future memory and logic applications. Here we demonstrate a high-density, fully operational hybrid crossbar/CMOS system composed of a transistor- and diode-less memristor crossbar array vertically integrated on top of a CMOS chip by taking advantage of the intrinsic nonlinear characteristics o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014